
- Time
- (Edited)
- Post link
No throw away your Old nasty display port Adaptors because now we are on 1.3 did you not know?
DisplayPort version 1.3 was approved on September 15, 2014.[18] This standard increases overall transmission bandwidth to 32.4 Gbit/s with the new HBR3 mode featuring 8.1 Gbit/s per lane (up from 5.4 Gbit/s with HBR2 in version 1.2), totalling 25.92 Gbit/s with overhead removed. This bandwidth allows for 5K displays (5120×2880 px) in RGB mode, and UHD 8K television displays at 7680×4320 (16:9, 33.18 megapixels) using 4:2:0 subsampling at 60 Hz. The bandwidth also allows for two UHD (3840×2160 px) computer monitors at 60 Hz in 24-bit RGB mode using Coordinated Video Timing, a 4K stereo 3D display, or a combination of 4K display and USB 3.0 as allowed by DockPort. The new standard features HDMI 2.0 compatibility mode with HDCP 2.2 content protection. It also supports VESA Display Stream Compression, which uses a visually lossless low-latency algorithm to increase resolutions and color depths and reduce power consumption.[19]
Companion standards Mini DisplayPort
Mini DisplayPort (mDP) is a standard announced by Apple in the fourth quarter of 2008. Shortly after announcing the Mini DisplayPort, Apple announced that it would license the connector technology with no fee. The following year, in early 2009, VESA announced that Mini DisplayPort would be included in the upcoming DisplayPort 1.2 specification. On 24 February 2011, Apple and Intel announced Thunderbolt, a successor to Mini DisplayPort which adds support for PCI Express data connections while maintaining backwards compatibility with Mini DisplayPort based peripherals.[20]
Micro DisplayPort
Micro DisplayPort will target systems that need ultra-compact connectors, such as phones, tablets and ultra-portable notebook computers. This new standard will be physically smaller than the currently available mini DisplayPort connectors. The standard was expected to be released by Q2 2014.[21]
DDM
Direct Drive Monitor (DDM) 1.0 standard was approved in December 2008. It allows for controller-less monitors where the display panel is directly driven by the DisplayPort signal, although the available resolutions and color depth are limited to two-lane operation.
eDP
Embedded DisplayPort (eDP) 1.0 standard was adopted in December 2008. It aims to define a standardized display panel interface for internal connections; e.g., graphics cards to notebook display panels.[22] It has advanced power-saving features including seamless refresh rate switching. Version 1.1 was approved in October 2009 followed by version 1.1a in November 2009. Version 1.2 was approved in May 2010 and includes DisplayPort 1.2 data rates, 120 Hz sequential color monitors, and a new display panel control protocol that works through the AUX channel.[14] Version 1.3 was published in February 2011; it includes a new Panel Self-Refresh (PSR) feature developed to save system power and further extend battery life in portable PC systems.[23] PSR mode allows GPU to enter power saving state in between frame updates by including framebuffer memory in the display panel controller.[14] Version 1.4 was released in February 2013; it reduces power consumption with partial-frame updates in PSR mode, regional backlight control, lower interface voltage, and additional link rates; the auxiliary channel supports multi-touch panel data to accommodate different form factors.[24] Version 1.4a was published in February 2015; it is based on DisplayPort 1.3 and supports HBR3 data rate, Display Stream Compression 1.1, Segmented Panel Displays, and partial updates for Panel Self-Refresh.[25]
iDP
Internal DisplayPort (iDP) 1.0 was approved in April 2010. The iDP standard defines an internal link between a digital TV system on a chip controller and the display panel's timing controller. It aims to replace currently used internal FPD-Link lanes with DisplayPort connection.[26] iDP features unique physical interface and protocols, which are not directly compatible with DisplayPort and are not applicable to external connection, however they enable very high resolution and refresh rates while providing simplicity and extensibility.[14] iDP features non-variable 2.7 GHz clock and is nominally rated at 3.24 Gbit/s data rate per lane, with up to sixteen lanes in a bank, resulting in six-fold decrease in wiring requirements over FPD-Link for a 1080p24 signal; other data rates are also possible. iDP was built with simplicity in mind and it doesn't have AUX channel, content protection, or multiple streams; however it does have frame sequential and line interleaved stereo 3D.[14]
PDMI
Portable Digital Media Interface (PDMI) is an interconnection between docking stations/display devices and portable media players, which includes 2-lane DisplayPort v1.1a connection. It has been ratified in February 2010 as ANSI/CEA-2017-A.
wDP
Wireless DisplayPort (wDP) enables DisplayPort 1.2 bandwidth and feature set for cable-free applications operating in 60 GHz radio band; it was announced on November 2010 by WiGig Alliance and VESA as a cooperative effort.[27]
SlimPort
SlimPort, a brand of Analogix products,[28] complies with Mobility DisplayPort, also known as MyDP, which is an industry standard for a mobile audio/video Interface, providing connectivity from mobile devices to external displays and HDTVs. SlimPort implements the transmission of video up to 4K-UltraHD and up to eight channels of audio over the micro-USB connector to an external converter accessory or display device. SlimPort products support seamless connectivity to DisplayPort, HDMI and VGA displays.[29] The MyDP standard was released in June 2012,[30] and the first product to use SlimPort was Google's Nexus 4 smartphone.[31]
SlimPort is an alternative to Mobile High-Definition Link (MHL).[32][33]
DisplayID
DisplayID is designed to replace the E-EDID standard. DisplayID features variable-length structures which encompass all existing EDID extensions as well as new extensions for 3D displays and embedded displays.
The latest version 1.3 (announced on 23 September 2013) adds enhanced support for tiled display topologies; it allows better identification of multiple video streams, and reports bezel size and locations.[34] As of December 2013, many current 4K displays use a tiled topology, but lack a standard way to report to the video source which tile is left and which is right. These early 4K displays, for manufacturing reasons, typically use two 1920×2160 panels laminated together and are currently generally treated as multiple-monitor setups.[35] DisplayID 1.3 also allows 8K display discovery, and has applications in stereo 3D, where multiple video streams are used.
DockPort
DockPort, formerly known as Lightning Bolt, is an extension to DisplayPort to include USB 3.0 data as well as power for charging portable devices from attached external displays. Originally developed by AMD and Texas Instruments, it has been announced as a VESA specification in 2014.[36]
USB Type-C
On September 22, 2014, VESA published the "DisplayPort Alternate Mode on USB Type-C Connector Standard", a specification on how to send DisplayPort signals over the newly released USB Type-C connector. One, two or all four of the differential lanes defined for the SuperSpeed bus can be configured dynamically as DisplayPort lanes. In the first two cases the connector still can carry a full USB 3.1 signal; in the latter case, at least a USB 2.0 signal is available. The DisplayPort AUX channel is also supported through the "sideband" pair over the same connector; furthermore, USB power delivery according to the newly expanded USB-PD 2.0 specification is possible at the same time. This makes the Type-C connector a strict superset of the use-cases envisioned for DockPort.[3
NEVERMIND THE EDID MANAGERS WE WILL ALL MANAGE TO GET SOMETHING ON THE SCREEN !!! EVEN IF THEY ARE NOT COMPLIANT WITH DISPLAYID AND USE AN EDID WHAT IS CURRENTLY THE STANDARD USED NOW....